XIV Serbian Conference on Spectral Line Shapes in Astrophysics Bajina Bašta, Serbia, June 19 - 23, 2023 Book of Abstracts, Eds. Luka Č. Popović, Nataša Bon, Edi Bon and Sylvie Sahal-Bréchot

VISUALIZATION OF ADIABATIC DARK STATES UNDER TWO-PHOTON EXCITATION OF SODIUM ATOMS

A. Cinins¹, M. S. Dimitrijević^{2,3}, V. A. Srećković⁴, M. Bruvelis⁵, K. Miculis^{1,6}, N. N. Bezuglov⁷ and A. Ekers⁵

¹Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia
²Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
³LERMA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, France
⁴Institute of Physics, University of Belgrade, P.O. Box 57, Belgrade 11001, Serbia
⁵King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
⁶National Research Nuclear University MEPhI, Moscow, 115409 Russia
⁷Sankt-Petersburg State University, 199034 St. Petersburg, Russia

E-mail: arturs.cinins@lu.lv, mdimitrijevic@aob.rs

In our previous work [1], we theoretically analyzed the formation of three types of adiabatic states (dark, bright, and chameleon) in the Autler-Townes spectra of sodium atoms. Here we report on experimental identification of dark states in the spectra of sodium atoms under two-step laser excitation of a supersonic Na beam. In the experiment, a strong pump laser couples the hyper-fine components F'' = 1, 2 of the ground state $3s_{1/2}$ with components F' = 1, 2 of excited state $3p_{1/2}$ or F' = 0, 1, 2, 3 of $3p_{3/2}$ state. Populations and energies of the adiabatic (dressed) states are probed by scanning a comparatively weak laser field across the $3p_{1/2,3/2} \rightarrow 7d_{3/2}$ transitions. The corresponding excitation spectra reveal the presence of an intense peak with side-peaks of much smaller intensities. The side peaks experience a noticeable shift due to the Autler-Townes effect as the pump laser intensity is increased, while the position of the main peak remains virtually unchanged. We interpret these experimental findings as the evidence of a "gray" state a state of nearly constant Autler-Townes energy, that appears bright when the laser coupling is weak, but evolves into a proper dark state upon strong coupling [2].

References

- [1] Cinins A., Bruvelis M., Dimitrijević M. S., et al.: 2022, Astronomische Nachrichten 343, e210081.
- [2] Kirova T., Cinins A., et al.: 2017, Phys.Rev. A 96, 043421.